

## Curriculum

|                         | Level 01 ( K1 & K2 _7-10 yrs)                 | Level 02 (K3 & K4 _11-14 yrs)                     |
|-------------------------|-----------------------------------------------|---------------------------------------------------|
| Programming<br>Language | Scratch (Magiccode) - block-based programming | Magicblocks (IoT) + Scratch<br>(Robotics)         |
| Hardware Kit            | Magicbit TINY - Robotics Learning kit         | Magicbit learner Kit + classic 2W<br>robotics kit |
| Magicbit Device         | Magicbit Tiny                                 | Magicbit Core                                     |
| Lessons                 | 01.1 - Introduction to Scratch<br>(Magiccode) | 01 - Intro to IoT + Magicbit OS                   |
|                         | 01.2 - Light show                             |                                                   |
|                         | 02 - Dimmer Magic                             | 02 - Magicblocks set up + LED Blinking            |
|                         | 03 - Secret message                           | 03.1 - Simple Traffic Light System                |
|                         |                                               | 03.2 - Knight Rider pattern                       |
|                         | 04.1 - Day - Night Predictor                  | 04 - Light level meter                            |
|                         | 04.2 - Night Light                            |                                                   |
|                         | 05.1 - Anti-theft                             | 05.1 - Smart light                                |
|                         | 05.2 - People count                           | 05.2 - Smart street light                         |
|                         | 06.1 - Moving sprites                         | 06.1 - Smart Reader                               |
|                         | 06.2 - Apple collector - Animated Game        | 06.2 - Talking Tom                                |
|                         | 07 - Introduction to Robotics                 | 07.1 - Digital Clock                              |
|                         |                                               | 07.2 - Stopwatch                                  |
|                         | 08 - Bluetooth remote control car             | 08 - IoT weather station                          |

| 09 - Obstacle-avoiding robot car     | 09 - Multiple IoT devices (via MQTT)         |
|--------------------------------------|----------------------------------------------|
| 10 - Roach Robot                     | 10 - Exam grading system                     |
| 11 - Dancing Robot                   | 11- Scratch basics                           |
| 12 - Automatic rail gate             | 12 - Magicbit as a joystick - animated games |
| 13 - Robot Battle                    | 13 - Intro to Robotics + Robot Assembly      |
| 14 - Automatic Water Tap             | 14.1 - Obstacle avoiding bot                 |
|                                      | 14.2 - WiFi Bot                              |
| 15 - Automatic Plant watering system | 15 - Robot battle                            |

## **Detailed Plan for Level 01**

| Lesson Name                                      | Learning Outcomes                                                                                                                                                          | Delivery Method                                                                                                                                   | Aligning with National<br>Curriculum                                                                                                                                                                |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01.1 - Introduction<br>to Scratch<br>(Magiccode) | <ul> <li>Introduction Scratch /<br/>Magiccode Platform</li> <li>Basics of the block-based<br/>programming (Scratch)</li> </ul>                                             | <ul> <li>Introduce Magiccode<br/>interface</li> <li>Introduce the<br/>Magicbit Tiny Device</li> </ul>                                             | <b>KS1:</b> Use technology purposefully to create, organise, store, manipulate and retrieve digital content.                                                                                        |
| 01.2 - Light show                                | <ul> <li>LED controlling with digital<br/>signals</li> </ul>                                                                                                               | <ul> <li>A simple activity to<br/>blink the on-board<br/>LEDs in the magicbit<br/>tiny</li> </ul>                                                 | <b>KS1:</b> Understand what<br>algorithms are; how they are<br>implemented as programs on<br>digital devices; and that<br>programs execute by<br>following precise and<br>unambiguous instructions. |
| 02 - Dimmer<br>Magic                             | <ul> <li>About the potentiometer -<br/>electronic component</li> <li>Practical applications of<br/>basic electronic circuits</li> <li>Creativity and Innovation</li> </ul> | <ul> <li>Create a simple table<br/>lamp structure and<br/>make the program to<br/>control it using<br/>MagicCode and<br/>Magicbit Tiny</li> </ul> | <b>KS1:</b> Use technology purposefully to create, organise, store, manipulate and retrieve digital content.                                                                                        |

| 03 - Secret<br>message                                                   | <ul> <li>Practical applications of<br/>basic electronic circuits</li> <li>Creativity and Innovation</li> <li>Functioning of the Buzzer</li> </ul>                                | <ul> <li>Displaying a<br/>password/morse<br/>code using LEDs and<br/>a buzzer</li> </ul>                                                                                                                                                                                              | <b>KS1:</b> Use technology purposefully to create, organise, store, manipulate and retrieve digital content.                                                                                                               |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04.1 - Day - Night<br>Predictor<br>04.2 - Night Light                    | <ul> <li>Creativity and Innovation</li> <li>Functioning of the LDR</li> <li>Animations in Scratch</li> </ul>                                                                     | <ul> <li>A scratch animation<br/>to indicate day and<br/>night according to the<br/>environmental light<br/>condition</li> <li>Activating a light bulb<br/>( LED / RGB )<br/>according to the<br/>environmental light<br/>condition</li> </ul>                                        | <ul> <li>KS1: Recognise common<br/>uses of information<br/>technology beyond school.</li> <li>KS1: Use technology<br/>purposefully to create,<br/>organise, store, manipulate<br/>and retrieve digital content.</li> </ul> |
| 05.1 - Anti-theft<br>05.2 - People<br>count                              | <ul> <li>Practical applications of the concepts</li> <li>Creativity and Innovation</li> <li>Functioning of the proximity IR sensors</li> <li>Variables in programming</li> </ul> | <ul> <li>Activating an alarm<br/>from the buzzer when<br/>the IR sensors detect<br/>a movement</li> <li>Counting the no.of<br/>people (motions)<br/>entering through a<br/>door and going out<br/>from the door when<br/>the Proximity IR<br/>sensors detect a<br/>motion.</li> </ul> | <b>KS1:</b> Use technology<br>purposefully to create,<br>organise, store, manipulate<br>and retrieve digital content.                                                                                                      |
| 06.1 - Moving<br>sprites<br>06.2 - Apple<br>collector -<br>Animated Game | <ul> <li>Functioning of the push<br/>buttons</li> <li>Handling sprites in<br/>scratch with push buttons</li> <li>Multiple sprites, multiple<br/>scripts handing</li> </ul>       | <ul> <li>Control sprites with<br/>Magicbit Tiny push<br/>buttons</li> <li>Animating few sprites<br/>to make a simple<br/>game</li> </ul>                                                                                                                                              | <b>KS1:</b> Use technology purposefully to create, organise, store, manipulate and retrieve digital content.                                                                                                               |
| 07 - Introduction to<br>Robotics                                         | <ul> <li>Understand robot<br/>components and how<br/>they work together</li> </ul>                                                                                               | <ul> <li>Discussion with<br/>videos</li> </ul>                                                                                                                                                                                                                                        | <b>KS2:</b> Understand how digital systems work; Understand physical systems and sensors                                                                                                                                   |
| 08 - Bluetooth<br>remote control car                                     | <ul> <li>Bluetooth-Remote<br/>Controlling technique</li> <li>Robotics Basics</li> </ul>                                                                                          | <ul> <li>Assembling a robot<br/>car and programming<br/>via scratch which can<br/>be controlled via<br/>Bluetooth</li> </ul>                                                                                                                                                          | <b>KS2:</b> Design and debug<br>programs to control physical<br>systems; Use various forms of<br>input/output                                                                                                              |

| 09 -<br>Obstacle-avoiding<br>robot car     | <ul> <li>Obstacle avoiding<br/>technique</li> <li>Functions of Ultrasonic<br/>sensor</li> <li>Robotics Basics</li> </ul>                                                                                                    | <ul> <li>Programming the<br/>same robot car for<br/>obstacle-avoiding</li> </ul>                                                                                                             | <b>KS2</b> : Use selection in programs; Solve problems by decomposing them; Simulate/control physical systems                       |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 10 - Roach Robot                           | <ul> <li>Sensor readings with<br/>robotics concepts</li> <li>Create a responsive<br/>robot mimicking insect<br/>behaviour</li> </ul>                                                                                        | <ul> <li>Controlling the robot<br/>according to the<br/>environmental light<br/>condition -<br/>Cockroach concept</li> </ul>                                                                 | <b>KS2</b> : Design creative<br>programs that simulate<br>real-world behaviours; Work<br>with input/output and logical<br>reasoning |
| 11 - Dancing<br>Robot                      | <ul> <li>Robotics concepts,</li> <li>Neo-pixel LED<br/>functions</li> <li>Buzzer functions</li> </ul>                                                                                                                       | <ul> <li>Control the robot as<br/>it looks like dancing<br/>while generating<br/>different light<br/>patterns via Neopixel<br/>LED and some<br/>musical tones via the<br/>buzzer.</li> </ul> | <b>KS2</b> : Use sequence and repetition in programs; Create programs with specific goals                                           |
| 12 - Automatic rail<br>gate                | <ul> <li>Practical applications of<br/>the concepts</li> <li>Creativity and Innovation</li> <li>Functioning of the<br/>proximity IR sensors</li> <li>Functioning of the servo<br/>motors</li> </ul>                         | <ul> <li>Activate the servo<br/>motor as the rail<br/>gate when motion<br/>is detected by the<br/>Proximity IR<br/>sensors</li> </ul>                                                        | <b>KS2:</b> Control physical systems using software; Use selection and input/output in programs                                     |
| 13 - Robot Battle                          | <ul> <li>Test the previously<br/>learned concepts in one<br/>application</li> </ul>                                                                                                                                         | <ul> <li>Arrange a robot<br/>battle which the<br/>students program<br/>the robots</li> </ul>                                                                                                 | <b>KS2:</b> Control physical systems using software; Use selection and input/output in programs                                     |
| 14 - Automatic<br>Water Tap                | <ul> <li>Practical application of<br/>the concepts</li> <li>Servo motor operation</li> <li>IR proximity sensor<br/>readings</li> </ul>                                                                                      | <ul> <li>Use proximity<br/>sensors to control<br/>water flow<br/>automatically</li> </ul>                                                                                                    | <b>KS2:</b> Simulate/control physical systems; Combine hardware inputs and program logic                                            |
| 15 - Automatic<br>Plant watering<br>system | <ul> <li>Use of servo motor for precise control in automation projects</li> <li>Understand the importance of timing and delays in coordinating actions</li> <li>Explore the concept of automation in daily tasks</li> </ul> | <ul> <li>Servo motor<br/>operation with<br/>timing</li> </ul>                                                                                                                                | <b>KS2</b> : Design systems for automation; Present and evaluate results                                                            |

## **Detailed Plan for Level 02**

| Lesson Name                                                             | Learning Outcomes                                                                                                                        | Delivery Method                                                                          | Aligning with National<br>Curriculum                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01 - Intro to IoT +<br>Magicbit OS                                      | <ul> <li>Basics of IoT</li> <li>Familiar with Magicbit device</li> </ul>                                                                 | <ul> <li>Discussions</li> <li>Pre-loaded programs</li> </ul>                             | <b>KS3</b> - Understand<br>hardware/software<br>components and how they<br>communicate with one<br>another and with other<br>systems                                                                                                                                                         |
| 02 - Magicblocks set<br>up + LED Blinking                               | <ul> <li>Getting familiar with<br/>the magicblocks.io<br/>platform</li> <li>Digital signals<br/>handling via<br/>magicblockks</li> </ul> | <ul> <li>Magicblokcs account<br/>Creation</li> <li>LED Blinking activity</li> </ul>      | <b>KS3</b> - Use programming<br>languages to solve<br>computational problems and<br>understand how digital<br>systems work                                                                                                                                                                   |
| 03.1 - Simple Traffic<br>Light System<br>03.2 - Knight Rider<br>pattern | <ul> <li>Digtal signals handling</li> <li>Practical Applications<br/>of Digital Signal<br/>Handling</li> </ul>                           | • Controlling On-board LEDs on the Magicbit                                              | <ul> <li>KS3 - Design and use<br/>computational abstractions<br/>that model real-world<br/>systems and use logical<br/>reasoning to compare<br/>algorithms</li> <li>KS3 - Develop modular<br/>programs that use<br/>procedures or functions; use<br/>loops and control structures</li> </ul> |
| 04 - Light level meter                                                  | <ul> <li>Functions of LDR</li> <li>Analog inputs /<br/>readings</li> </ul>                                                               | <ul> <li>Displaying readings</li> </ul>                                                  | <b>KS3 -</b> Undertake creative<br>projects involving data<br>collection and analysis using<br>digital systems                                                                                                                                                                               |
| 05.1 - Smart light<br>05.2 - Smart street<br>light                      | <ul> <li>Practical applications<br/>of the concepts</li> </ul>                                                                           | <ul> <li>Simple activities to control lights according to the sensor readings</li> </ul> | <ul> <li>KS3 - Apply Boolean logic<br/>(e.g., IF conditions); develop<br/>problem-solving skills<br/>through programming</li> <li>KS3 - Model behavior of<br/>physical systems; develop<br/>solutions using digital<br/>input/output</li> </ul>                                              |
| 06.1 - Smart Reader                                                     | <ul> <li>Text inputs handing</li> <li>Audio output handling</li> <li>Practical applications<br/>of the concepts</li> </ul>               | <ul> <li>Activity to read out the given texts</li> </ul>                                 | <b>KS3 -</b> Understand and<br>manipulate data inputs (e.g.,<br>RFID); develop modular<br>programs                                                                                                                                                                                           |

| 06.2 - Talking Tom                                 |                                                                                                                                        |                                                                                                     | KS3 / KS4 - Create digital<br>artefacts combining<br>hardware and software; use<br>technology creatively and<br>expressively                                                                  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07.1 - Digital Clock<br>07.2 - Stopwatch           | <ul> <li>Time handling</li> <li>Text displaying</li> </ul>                                                                             | <ul> <li>Activities with timing</li> </ul>                                                          | <ul> <li>KS3 - Develop modular programs; manipulate data types like time</li> <li>KS3 - Create programs to solve real-world problems; apply algorithmic logic and use of variables</li> </ul> |
| 08 - IoT weather<br>station                        | <ul> <li>Use an API service to receive data.</li> <li>IoT dashboards</li> </ul>                                                        | <ul> <li>Displaying weather<br/>details received from<br/>an API on an IOT<br/>dashboard</li> </ul> | <b>KS3 -</b> Collect, analyse and<br>present data; integrate<br>multiple digital systems and<br>sensors                                                                                       |
| 09 - Multiple IoT<br>devices ( via MQTT)           | <ul> <li>Communication<br/>between multiple IoT<br/>devices</li> <li>MQTT basics</li> </ul>                                            | <ul> <li>Activity to<br/>communicate between<br/>multiple magicbits</li> </ul>                      | KS3 / KS4 - Understand how<br>systems communicate;<br>develop networked systems;<br>use new or unfamiliar<br>technologies analytically                                                        |
| 10 - Exam grading<br>system                        | <ul> <li>Conditional<br/>statements</li> <li>Practical application of<br/>the concepts</li> </ul>                                      | <ul> <li>Activity to decide<br/>grades according to<br/>marks</li> </ul>                            | KS3 / KS4 - Use appropriate<br>data structures<br>(arrays/tables); write<br>programs to solve defined<br>problems; evaluate<br>information technology<br>analytically                         |
| 11- Scratch basics                                 | <ul> <li>Introduction Scratch /<br/>Magiccode Platform</li> <li>Basics of the<br/>block-based<br/>programming<br/>(Scratch)</li> </ul> | <ul> <li>Discussion and<br/>activities with Magicbit</li> </ul>                                     | <b>KS3 -</b> Block-based<br>programming for<br>problem-solving; apply<br>fundamental concepts of<br>computer science<br>(sequences, logic)                                                    |
| 12 - Magicbit as a<br>joystick - animated<br>games | <ul> <li>Scratch programming<br/>basics - Multiple<br/>sprites , multiple<br/>scripts</li> <li>Push buttons handling</li> </ul>        | <ul> <li>Animated game<br/>creation</li> </ul>                                                      | <b>KS3 /KS4 -</b> Use technology<br>creatively; design interactive<br>content; develop logic and<br>computational thinking                                                                    |

| 13 - Intro to Robotics<br>+ Robot Assembly         | <ul> <li>Understand robot<br/>components and how<br/>they work together</li> </ul>                  | <ul> <li>Discussion with videos</li> </ul>                                                       | <b>KS3 /KS4 -</b> Model physical<br>systems and how software<br>interacts with hardware;<br>develop design and<br>abstraction skills                                                                                                       |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14.1 - Obstacle<br>avoiding bot<br>14.2 - WiFi Bot | <ul> <li>Obstacle avoiding<br/>technique</li> <li>Controlling a robot<br/>via a web page</li> </ul> | <ul> <li>Playing with the robot<br/>using pre-loaded<br/>programs + scratch<br/>codes</li> </ul> | KS3 /KS4 - Apply key<br>algorithms to physical tasks;<br>evaluate and test<br>autonomous systems<br>KS3 /KS4 - Understand<br>digital communication<br>systems; use hardware and<br>networking concepts; solve<br>problems using technology |
| 15 - Robot battle                                  | <ul> <li>Test the previously<br/>learned concepts in<br/>one application</li> </ul>                 | • Arrange a robot battle which the students program the robots                                   | KS3 /KS4 - Engage in<br>creative computing projects;<br>develop problem-solving and<br>optimization strategies;<br>simulate                                                                                                                |